BloomSky APl Documentation
Release 0.3.2+0.g05bd451.dirty

Dave Forgac

Dec 28, 2017

Contents

BloomSky API 3
L1 PrerequiSites v v i e e i e e e e e e e e e e e e e e e e e e e 3
1.2 Getting Started L e e e e e e e e e e e 3
Installation 5
Usage 7
Contributing 9
4.1 Typesof Contributions L. 9
42 GetStarted! L e e e e e e e e e e 10
43 Pull Request Guidelines i ot i i e e e e e e e e e 10
Credits 13
5.1 Maintainer vt e 13
52 Contributors e e e e e e e e e 13
History 15
Indices and tables 17

BloomSky APl Documentation, Release 0.3.2+0.9g05bd45f.dirty

Contents:

Contents 1

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

2 Contents

CHAPTER 1

BloomSky API

A simple Python client for the BloomSky APL
Note: Neither this package nor its maintainer are affiliated with BloomSky.

For more information about the BloomSky device and its API, see: http://weatherlution.com/bloomsky-api/

1.1 Prerequisites

* Python (2.7, 3.3, 3.4, 3.5)
* BloomSky API key (get it here: https://dashboard.bloomsky.com/)

1.2 Getting Started

1.2.1 Installation

’pip install BloomSky-API

To install optional command-line interface (requires click):

’pip install BloomSky-API[cli]

1.2.2 Usage

You can either store the API key in an environment variable named BLOOMSKY_API_KEY or provide it as an argu-
ment when creating the client.

Stored in environment variable:

https://travis-ci.org/tylerdave/bloomsky-api
https://pypi.python.org/pypi/bloomsky-api
https://coveralls.io/github/tylerdave/bloomsky-api?branch=master
http://weatherlution.com/bloomsky-api/
https://dashboard.bloomsky.com/

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

import bloomsky_ api
client = bloomsky_api.BloomSkyAPIClient ()
data = client.get_data()

Provided via argument:

import bloomsky_ api
client = bloomsky_api.BloomSkyAPIClient (api_key='Your-real-API-key-goes—here')
data = client.get_data()

1.2.3 Command Line Interface

If you install the optional command-line interface, the bloomsky-api command will be available. Usage:

Usage: bloomsky—-api [OPTIONS]

Retrieve data from the BloomSky API and output it as JSON.

Options:

—-—api-key TEXT BloomSky API key (can be set via env var
BLOOMSKY_API_KEY) .

——api-url TEXT Override BloomSky API endpoint URL.
—-—Jjson—-indent INTEGER Number of spaces to indent nested JSON levels.
-i, —-—-intl-units Use SI units instead of the default US.
——raw Return raw response instead of remapped keys.
--help Show this message and exit.

1.2.4 Data

The returned data contains all of the information from the API response but with more Pythonic names and data types.

4 Chapter 1. BloomSky API

CHAPTER 2

Installation

Install using pip:

’pip install BloomSky-API

If you’d like to use the optional command-line client, install the c/i “extras” using this command:

’pip install BloomSky-API[cli]

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

6 Chapter 2. Installation

CHAPTER 3

Usage

You can either store the API key in an environment variable named BLOOMSKY_API _KEY or provide it as an argu-
ment when creating the client.

Stored in environment variable:

import bloomsky_ api
client = bloomsky_api.BloomSkyAPIClient ()
data = client.get_data()

Provided via argument:

import bloomsky_api
client = bloomsky_api.BloomSkyAPIClient (api_key='Your-real-API-key-goes—here')
data = client.get_data()

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

8 Chapter 3. Usage

CHAPTER 4

Contributing

Contributions of all types are welcome!

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

If you think something’s not working correctly, report it here: https://github.com/tylerdave/bloomsky-api/issues.
If you are reporting a bug, please include:
* Detailed steps to reproduce the bug.

* Any details about your local setup that might be helpful in troubleshooting.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whomever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whomever wants to implement
it.

4.1.4 Write Documentation

BloomSky API could always use more documentation, whether as part of the BloomSky API docs, in docstrings, or
even on the web in blog posts, articles, and such.

https://github.com/tylerdave/bloomsky-api/issues

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

4.1.5 New Features & Feedback

The best way to send feedback is to file an issue at https://github.com/tylerdave/bloomsky-api/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up BloomSky-API for local development.
1. Fork the bloomsky-api repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/bloomsky-api.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv bloomsky-api
$ cd bloomsky-api/
$ pip install -e . [develop]

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 bloomsky_api tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

10 Chapter 4. Contributing

https://github.com/tylerdave/bloomsky-api/issues

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.3, 3.4, 3.5 and for PyPy. Check https://travis-ci.org/tylerdave/
bloomsky-api/pull_requests and make sure that the tests pass for all supported Python versions.

4.3. Pull Request Guidelines 11

https://travis-ci.org/tylerdave/bloomsky-api/pull_requests
https://travis-ci.org/tylerdave/bloomsky-api/pull_requests

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

12 Chapter 4. Contributing

CHAPTER B

Credits

5.1 Maintainer

* Dave Forgac <tylerdave @tylerdave.com>

5.2 Contributors

None yet. Why not be the first? See: CONTRIBUTING.rst

13

mailto:tylerdave@tylerdave.com

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

14 Chapter 5. Credits

CHAPTER O

History

0.3.0 - 2017-01-07
— Include device_type in response
0.2.0 - 2016-08-22
- Add CLI
0.1.0 - 2016-08-21
— Convert timestamp to ISO timestamp accounting for offset
0.0.1 - 2016-08-20

— Initial release!

15

BloomSky API Documentation, Release 0.3.2+0.g05bd45f.dirty

16 Chapter 6. History

CHAPTER /

Indices and tables

* genindex
* modindex

e search

17

	BloomSky API
	Prerequisites
	Getting Started

	Installation
	Usage
	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Credits
	Maintainer
	Contributors

	History
	Indices and tables

